Learning to rank
Автор:
Jesse Russell,Ronald Cohn, 100 стр., издатель:
"Книга по Требованию", ISBN:
978-5-5088-7172-7
High Quality Content by WIKIPEDIA articles! Learning to rank or machine-learned ranking (MLR) is a type of supervised or semi-supervised machine learning problem in which the goal is to automatically construct a ranking model from training data. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item. Ranking model's purpose is to rank, i.e. produce a permutation of items in new, unseen lists in a way, which is "similar" to rankings in the training data in some sense. Данное издание представляет собой компиляцию сведений, находящихся в свободном доступе в среде Интернет в целом, и в информационном сетевом ресурсе "Википедия" в частности. Собранная по частотным запросам указанной тематики, данная компиляция построена по принципу подбора близких информационных ссылок, не имеет самостоятельного сюжета,...