Residuated lattice
Автор:
Jesse Russell,Ronald Cohn, 103 стр., издатель:
"Книга по Требованию", ISBN:
978-5-5141-3677-3
High Quality Content by WIKIPEDIA articles! In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice x ? y and a monoid x•y which admits operations xz and z/y loosely analogous to division or implication when x•y is viewed as multiplication or conjunction respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Ward and Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ?, for example Kleene algebras and action algebras. Данное издание представляет собой компиляцию сведений, находящихся в свободном доступе в среде Интернет в целом, и в информационном сетевом ресурсе "Википедия" в частности. Собранная по частотным запросам указанной тематики, данная компиляция...
Рейтинг книги:



4 из 5,
9 голос(-ов).