Zariski surface
Автор:
Jesse Russell,Ronald Cohn, 72 стр., издатель:
"Книга по Требованию", ISBN:
978-5-5111-1297-8
High Quality Content by WIKIPEDIA articles! In algebraic geometry, a branch of mathematics, a Zariski surface is a surface over a field of characteristic p > 0 such that there is a dominant inseparable map of degree p from the projective plane to the surface. In particular, all Zariski surfaces are unirational. They were named by Piotr Blass after Oscar Zariski who used them in 1958 to give examples of unirational surfaces in characteristic p > 0 that are not rational. (In characteristic 0 by contrast, Castelnuovo's theorem implies that all unirational surfaces are rational.) Данное издание представляет собой компиляцию сведений, находящихся в свободном доступе в среде Интернет в целом, и в информационном сетевом ресурсе "Википедия" в частности. Собранная по частотным запросам указанной тематики, данная компиляция построена по принципу подбора близких информационных ссылок, не имеет самостоятельного сюжета, не содержит никаких аналитических материалов, выводов, оценок морального,...